

Kirkuk Journal of Medical Sciences

ORIGINAL ARTICLE

Evaluating the Triglyceride–Glucose Index as an Early Screening Marker for Gestational Diabetes Mellitus

Amal Muner Mubarak *, Esraa Jalil , Basim M. Ali

¹Department of Obstetrics and Gynecology, Faculty of Medicine, University of Kufa, Kufa, Iraq

²Department of Obstetrics and Gynecology, Al-Zahraa Teaching Hospital, Najaf, Iraq

³Department of Biochemistry, Faculty of Science, University of Kufa, Kufa, Iraq

*Corresponding author email: amalmn.mubarak@uokufa.edu.iq

Received: 29 September 2025

Accepted: 16 January 2026

First published online: 30 January 2026

How to cite this article:

Muner Mubarak A, Jalil E, Ali BM. Evaluating the triglyceride–glucose index as an early screening marker for gestational diabetes mellitus. *Kirkuk Journal of Medical Sciences*. 2026;14(1):10–15.

DOI: [10.32894/kjms.2026.165647.1209](https://doi.org/10.32894/kjms.2026.165647.1209)

ABSTRACT

Background: Gestational diabetes mellitus (GDM) is a significant risk factor for adverse short- and long-term health outcomes for both the mother and infant. Although the oral glucose tolerance test (OGTT) is the gold standard for diagnosing GDM, its reproducibility remains debated. This study assessed the predictive accuracy of the triglyceride–glucose (TyG) index as an early biomarker for GDM.

Methods: This prospective study was conducted at Al-Zahraa Teaching Hospital, Iraq, and included 150 singleton pregnant women at 7–14 weeks of gestation. Demographic and clinical data were collected. Maternal fasting blood tests were obtained for a lipid profile, fasting blood glucose, and HbA1c, and the TyG index was calculated. Predictive performance was evaluated using logistic regression and receiver operating characteristic (ROC) analysis.

Results: The TyG index was positively associated with incident GDM (OR = 3.45, 95% CI: 2.22–5.36; $p < 0.001$). ROC analysis showed an area under the curve (AUC) of 0.89, with a cut-off value of 8.5 yielding 85.0% sensitivity and 78.0% specificity.

Conclusion: An increased TyG index was significantly associated with the occurrence of GDM and may serve as an inexpensive tool for early screening.

Key words: Gestational diabetes mellitus; Triglyceride–glucose index; Insulin resistance; Pregnancy; Biomarkers

INTRODUCTION

Gestational diabetes mellitus (GDM) has increased globally over the past decade, affecting approximately 10%–26% of pregnancies. This rise has been attributed in part to increasing maternal obesity and advanced maternal age [1].

GDM is associated with important short- and long-term adverse health outcomes for both mothers and their offspring, including an increased risk of type 2 diabetes, cardiovascular disease, and other metabolic disorders later in life [2]. The 75 g oral glucose tolerance test (OGTT) remains the gold standard for diagnosing GDM [3, 4].

However, the reproducibility of the OGTT remains debated; diagnostic criteria are not fully unified, and concerns persist regarding potential overdiagnosis, highlighting the need for additional credible biomarkers [5].

The triglyceride–glucose (TyG) index has been proposed as a reliable and cost-effective surrogate marker of insulin resistance (IR) [6]. Because IR is a key pathophysiological characteristic of metabolic syndrome and a precursor to type 2 diabetes, the TyG index may offer an accessible alternative to more complex traditional methods [7].

Nevertheless, the evidence on the TyG index as a screening tool for dysglycemia in pregnancy is contradictory. Some studies support its utility [7, 8], while others question its ability to predict GDM [9]. Therefore, this study aimed to investigate whether the TyG index could serve as an early biomarker of GDM.

PATIENTS AND METHODS

Study design and setting: A prospective analytic cohort study was conducted at Al-Zahraa Teaching Hospital. Enrollment and data collection were performed from October 1, 2024, to May 1, 2025.

A total of 150 women with singleton pregnancies were enrolled at their first antenatal (booking) visit at 7–14 weeks of gestation, during which only routine screening was performed. Exclusion criteria included pre-existing diabetes mellitus and chronic conditions such as hypertension, cardiovascular disease, and liver or kidney disease. Demographic and clinical data were collected, including maternal age and body mass index (BMI); obstetric history (gravidity, parity, previous abortions, and current gestational age); and relevant medical history (personal and family history of diabetes).

At the initial visit (7–14 weeks' gestation), venous blood samples were obtained from all participants after an overnight fast of at least 8 hours. Samples were analyzed for fasting plasma glucose (FPG), glycated hemoglobin (HbA1c), and a fasting lipid profile (including triglycerides). Biochemical analyses were performed using standard automated enzymatic meth-

ods on a BIOLABO (France) analyzer. Internal quality control procedures were performed with each HbA1c measurement to ensure the reliability of results. The triglyceride–glucose (TyG) index was calculated for each participant using the following formula:

$$\text{TyG} = \ln [\text{TG (mg/dL)} \times \text{FPG (mg/dL)} / 2]$$

According to NICE guidelines, women were assessed for the risk of gestational diabetes mellitus (GDM) at the first antenatal appointment and categorized as either “moderate-risk” or “high-risk.” High-risk was defined as a history of GDM in a prior pregnancy; these women were offered an oral glucose tolerance test (OGTT) as soon as possible, which was repeated at 24–28 weeks if the initial result was normal. Moderate-risk women, those with a BMI > 30, a previous macrosomic baby, a family history of diabetes, or belonging to a high-prevalence ethnic group, underwent an OGTT at 24–28 weeks [10].

Diagnosis of GDM: GDM was diagnosed according to RCOG/NICE guidelines using a 75 g oral glucose tolerance test (OGTT). Plasma glucose was measured at 0 (fasting) and 2 hours. GDM was diagnosed if one or both of the following thresholds were met or exceeded: fasting plasma glucose $\geq 5.6 \text{ mmol/L}$ (100 mg/dL) and/or 2-hour plasma glucose $\geq 7.8 \text{ mmol/L}$ (140 mg/dL) [10].

Follow-up: Participants were contacted by telephone up to 28 weeks of gestation to ensure completion of the recommended OGTT within the antenatal window.

Statistical analysis: Data were analyzed using SPSS (version 26). Continuous variables are presented as mean \pm SD and categorical variables as n (%). Between-group differences were evaluated using Student's *t*-test or the χ^2 test, as appropriate. Spearman correlation coefficients were used to assess associations with OGTT values. Independent predictors of GDM were identified using multivariable logistic regression; results are reported as odds ratios (ORs) with 95% confidence intervals (CIs). Receiver operating characteristic (ROC) analysis was used to determine the optimal TyG-index threshold (Youden index); the area under the curve (AUC), sensitivity, and specificity are reported. All tests were two-tailed with $\alpha = 0.05$.

RESULTS

Descriptive characteristics:

Women with GDM were significantly older (43.6 vs. 30.7 years, $p=0.002$) and had a higher BMI (34.1 vs. 29.3 kg/m², $p<0.001$) compared with non-GDM women. They also had higher gravidity (4.1 vs. 2.8, $p=0.001$) and parity (2.6 vs. 1.6, $p=0.003$).

Table 1. Baseline Characteristics and Laboratory Findings by Gestational Diabetes Mellitus (GDM) Status (N=150)

Variable	GDM (n=45)	Non-GDM (n=105)	p-value
Baseline characteristics			
Age (years)	43.6 ± 5.1	30.7 ± 4.9	0.002 ^a
BMI (kg/m ²)	34.1 ± 5.2	29.3 ± 4.7	<0.001 ^a
Gravidity	4.1 ± 1.3	2.8 ± 1.4	0.001 ^a
Parity	2.6 ± 1.2	1.6 ± 1.2	0.003 ^a
Previous GDM, n (%)	24 (53.3%)	0 (0.0%)	<0.001 ^b
Laboratory findings			
Fasting plasma glucose (mg/dL)	99.0 ± 1.4	81.7 ± 7.1	<0.001 ^a
Triglycerides (mg/dL)	207.7 ± 17.2	65.9 ± 11.2	<0.001 ^a
Total cholesterol (mg/dL)	283.6 ± 59.0	212.0 ± 49.5	0.021 ^a
LDL (mg/dL)	123.0 ± 47.8	107.4 ± 45.3	0.093 ^a
HDL (mg/dL)	47.3 ± 1.7	56.7 ± 11.5	<0.001 ^a
HbA1c (%)	5.8 ± 0.4	4.8 ± 0.4	<0.001 ^a
TyG index	9.24 ± 0.85	7.90 ± 0.18	<0.001 ^a

Data are presented as mean ± SD or n (%).

^aIndependent-samples t-test. ^bχ² test.

Abbreviations: BMI, body mass index; GDM, gestational diabetes mellitus; HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; LDL, low-density lipoprotein; TyG, triglyceride–glucose index.

A history of previous GDM was present in 53.3% of women with GDM and was absent in the non-GDM group (p<0.001) (Table 1).

Laboratory findings:

The GDM group had significantly higher fasting plasma glucose (99.0 vs. 81.7 mg/dL, p<0.001), triglycerides (207.7 vs. 65.9 mg/dL, p<0.001), total cholesterol (283.6 vs. 212.0 mg/dL, p=0.021), and HbA1c (5.8 vs. 4.8%, p<0.001). HDL was significantly lower in the GDM group (47.3 vs. 56.7 mg/dL, p<0.001), whereas LDL levels showed no significant difference (123.0 vs. 107.4 mg/dL, p=0.093). The TyG index was markedly elevated in the GDM group (9.24 vs. 7.90, p<0.001) (Table 1).

Correlation analysis:

The TyG index demonstrated statistically significant positive correlations with OGTT glucose parameters at both the initial visit and at 24–28 weeks' gestation (all p<0.001). The strength of these correlations was consistently moderate to

strong (Spearman's r range: 0.45–0.59), and correlations were marginally stronger at 24–28 weeks compared with the initial visit (Table 2, Panel A).

Predictors of GDM:

Multivariable logistic regression identified the TyG index as the strongest independent predictor of GDM (OR=3.45, 95% CI: 2.22–5.36, p<0.001). BMI (OR=1.26, p=0.001) and age (OR=1.06, p=0.004) were also significant predictors. HbA1c showed a trend toward association (OR=1.84, p=0.069) but did not reach statistical significance (Table 2, Panel B).

Predictive performance of TyG index:

The predictive performance of the TyG index for GDM was excellent, with an AUC of 0.89 (95% CI: 0.83–0.94, p<0.001). An optimal cut-off value of 8.5 was established, yielding a sensitivity of 85.0% and a specificity of 78.0% (Table 2, Panel C).

Table 2. Association and Predictive Performance of the Triglyceride–Glucose (TyG) Index for Gestational Diabetes Mellitus (GDM)

Panel A. Correlation of TyG index with OGTT glucose values (Spearman r ; p-value)				
OGTT parameter	Initial visit	24–28 weeks		
Fasting glucose	0.55 (< 0.001)		0.59 (< 0.001)	
2-hour post-glucose	0.45 (< 0.001)		0.48 (< 0.001)	
Panel B. Multivariable logistic regression for predictors of GDM				
Predictor	OR	95% CI	p-value	VIF
TyG index (ln scale)	3.45	2.22–5.36	< 0.001	1.18
BMI (kg/m ²)	1.26	1.11–1.43	0.001	1.22
Age (years)	1.06	1.02–1.10	0.004	1.15
HbA1c (%)	1.84	0.96–3.55	0.069	1.12
Panel C. ROC performance of TyG index for predicting GDM				
Cut-off point	Sensitivity (%)	Specificity (%)	AUC (95% CI)	p-value
8.5	85.0	78.0	0.89 (0.83–0.94)	< 0.001

Panel A: Values are Spearman's correlation coefficient (r) with two-tailed p-values in parentheses.

Panel B: Multivariable model adjusted for TyG index, BMI, age, and HbA1c.

Panel C: $TyG = \ln[TG \text{ (mg/dL)} \times FPG \text{ (mg/dL)} / 2]$; ln = natural logarithm; cut-off optimized by maximum Youden index; PPV = 80.0%; NPV = 84.3%.

Abbreviations: AUC, area under the curve; BMI, body mass index; CI, confidence interval; FPG, fasting plasma glucose; GDM, gestational diabetes mellitus; HbA1c, glycated hemoglobin; OGTT, oral glucose tolerance test; OR, odds ratio; PPV, positive predictive value; NPV, negative predictive value; ROC, receiver operating characteristic; TG, triglycerides; TyG, triglyceride–glucose index; VIF, variance inflation factor.

DISCUSSION

Gestational diabetes mellitus (GDM) is characterized by glucose intolerance that first appears or is recognized during pregnancy and reflects impaired insulin secretion and/or increased insulin resistance. Women with GDM, particularly those with marked insulin resistance, have an increased risk of adverse maternal and neonatal outcomes [11]. Accordingly, identifying simple early pregnancy markers is clinically important. In this context, the triglyceride–glucose (TyG) index has been proposed as an early marker to predict subsequent GDM [8, 9, 11].

In the present study, women who developed GDM were significantly older (43.6 vs. 30.7 years, $p=0.002$) and had a higher BMI (34.1 vs. 29.3 kg/m², $p<0.001$) than women without GDM. These findings are consistent with previous reports identifying advanced maternal age and obesity as major risk factors for GDM [12–14]. This association may reflect age-related declines in β -cell reserve and progressive reductions in insulin sensitivity, which limit the ability to compensate for the physiological insulin resistance of pregnancy.

We also observed higher gravidity (4.1 vs. 2.8) and parity (2.6 vs. 1.6) among women with GDM. Although reproductive history may influence maternal metabolic status, previous studies (including Modzelewski et al.) suggest that parity is a weaker and less consistent predictor of GDM compared with age and obesity, which remain the dominant risk factors in most populations [15].

Regarding lipid metabolism, women with GDM had signifi-

cantly higher triglyceride concentrations ($207.7 \pm 17.2 \text{ mg/dL}$ vs. $65.9 \pm 11.2 \text{ mg/dL}$) and lower HDL levels than controls. This pattern is consistent with earlier evidence linking dyslipidemia to insulin resistance and GDM [16–18]. Hypertriglyceridemia in GDM may be driven by increased hepatic very-low-density lipoprotein (VLDL) production and reduced lipoprotein lipase activity in the setting of insulin resistance [14].

Importantly, the TyG index emerged as a strong independent predictor of GDM in our multivariable model (OR = 3.45, 95% CI: 2.22–5.36; $p<0.001$). This finding aligns with prior studies reporting that TyG is an informative surrogate of insulin resistance and is associated with GDM risk [7, 19, 20]. Using a cut-off value of 8.5, the TyG index demonstrated good discriminative performance (AUC = 0.89, 95% CI: 0.83–0.94), with 85.0% sensitivity and 78.0% specificity. Variation in optimal TyG thresholds across studies is expected and may reflect differences in population characteristics, baseline metabolic risk, timing of measurement, and diagnostic criteria for GDM. For example, Mo et al. and Guo et al. reported cut-offs in the range of 8.632–8.890, whereas Yilmaz et al. reported a higher threshold of approximately 10.4 [7, 21, 22]. Despite this heterogeneity, several reports similarly describe good predictive accuracy of TyG for GDM [21, 23, 24]. In contrast, Guo et al. reported a lower predictive performance (AUC = 0.641), which may be attributable to differences in study design, population risk profile, or analytic methods [7].

CONCLUSION

The findings indicate that an elevated triglyceride–glucose (TyG) index is significantly associated with the development of gestational diabetes mellitus (GDM) and may serve as a simple, inexpensive tool for early risk stratification. Further studies in larger and more diverse populations are warranted to validate these results and to determine the optimal clinical cut-off for widespread implementation.

ETHICAL DECLARATIONS

• Ethics Approval and Consent to Participate

The study protocol was approved by the Ethical and Scientific Committees of the University of Kufa, Department of Obstetrics and Gynaecology, and Al-Zahraa Teaching Hospital (Document no. 222, date 09 January 2025). All participants provided their informed consent in writing before enrolment, and confidentiality was ensured by data anonymisation with unique codes and secure restricted access to identifiable information.

• Consent for Publication

None.

• Availability of Data and Material

The datasets are available from the corresponding author upon reasonable request.

• Competing Interests

The authors declare that there is no conflict of interest.

• Funding

Self-funded.

• Use of Generative Artificial Intelligence

The author declares that ChatGPT, a generative AI-based tool developed by OpenAI, was used solely to enhance clarity and grammatical accuracy during the final editing phase. It was not used for content generation, data analysis, or interpretation.

• Authors' Contributions

All authors contributed to the literature review, study design, data collection, statistical analysis, and manuscript preparation. All authors have read and approved the final version of the manuscript.

REFERENCES

- [1] Mnatzaganian G, Woodward M, McIntyre HD, Ma L, Yuen N, He F, et al., Trends in percentages of gestational diabetes mellitus attributable to overweight, obesity, and morbid obesity in regional Victoria: an eight-year population-based panel study. *BMC pregnancy and childbirth* 2022;22(1):95. <https://doi.org/10.1186/s12884-022-04420-9>
- [2] Wicklow B, Retnakaran R, Gestational diabetes mellitus and its implications across the life span. *Diabetes & metabolism journal* 2023;47(3):333–344. <https://doi.org/10.4093/dmj.2022.0348>
- [3] Kirke AB, Spry E, Atkinson D, Sinclair C, Marley JV, Oral glucose tolerance test—The imperfect gold standard for gestational diabetes screening: A qualitative study involving clinicians in regional, rural and remote areas of Western Australia. *Health Promotion Journal of Australia* 2025;36(1):e899. <https://doi.org/10.1002/hpja.899>
- [4] Pintaudi B, Di Vieste G, D'Anna R, Chiereghin F, Biamonte E, Corrado F, et al., The analytical reliability of the oral glucose tolerance test for the diagnosis of gestational diabetes: an observational, retrospective study in a caucasian population. *Journal of Clinical Medicine* 2022;11(3):564. <https://doi.org/10.3390/jcm11030564>
- [5] Bogdanet D, O'Shea P, Lyons C, Shafat A, Dunne F, The Oral Glucose Tolerance Test—Is It Time for a Change?—A Literature Review with an Emphasis on Pregnancy. *Journal of Clinical Medicine* 2020;9(11):3451. <https://doi.org/10.3390/jcm9113451>
- [6] Jeong S, Lee JH, The verification of the reliability of a triglyceride–glucose index and its availability as an advanced tool. *Metabolomics* 2021;17(11):97. <https://doi.org/10.1007/s11306-021-01837-9>
- [7] Guo Y, Lu J, Bahani M, Ding G, Wang L, Zhang Y, et al., Triglyceride–glucose index in early pregnancy predicts the risk of gestational diabetes: a prospective cohort study. *Lipids in Health and Disease* 2024;23(1):87. <https://doi.org/10.1186/s12944-024-02076-2>
- [8] Zhang J, Fang X, Song Z, Guo XK, Lin DM, Jiang FN, et al., Positive association of triglyceride glucose index and gestational diabetes mellitus: a retrospective cohort study. *Frontiers in Endocrinology* 2025;15:1475212. <https://doi.org/10.3389/fendo.2024.1475212>
- [9] YANG X, WANG Y, LI Y, ZHANG S, MA L, SUN Y, Association of Triglyceride to High Density Lipoprotein-Cholesterol Ratio In Early Pregnancy with the Risk of

Gestational Diabetes Mellitus: Large-sample Retrospective Cohort Study. *Medical Journal of Peking Union Medical College Hospital* 2024;15(3):580–586. <https://doi.org/10.12290/xhyxzz.2023-0495>

[10] National Institute for Health and Care Excellence, Diabetes in Pregnancy: Management from Preconception to the Postnatal Period 2015. <https://www.nice.org.uk/guidance/ng3>, NICE guideline NG3

[11] Li H, Miao C, Liu W, Gao H, Li W, Wu Z, et al., First-Trimester Triglyceride–Glucose Index and Risk of Pregnancy-Related Complications: A Prospective Birth Cohort Study in Southeast China. *Diabetes, Metabolic Syndrome and Obesity* 2022;15:3705–3715. <https://doi.org/10.2147/DMSO.S378964>

[12] Bullón-Vela V, Martínez-Tabar A, Etxezarreta-Uranga M, Martínez-González M, Basterra-Gortari FJ, Bes-Rastrollo M, Pre-Pregnancy Provegetarian Food Pattern and the Risk of Developing Gestational Diabetes Mellitus: The Seguimiento Universidad de Navarra (SUN) Cohort Study. *Medicina* 2024;60(11):1881. <https://doi.org/10.3390/medicina60111881>

[13] Alam S, Hasan MK, Neaz S, Hussain N, Hossain MF, Rahman T, Diabetes Mellitus: Insights from Epidemiology, Biochemistry, Risk Factors, Diagnosis, Complications and Comprehensive Management. *Diabetology* 2021;2(2):36–50. <https://doi.org/10.3390/diabetology2020004>

[14] Sweeting A, Hannah W, Backman H, Catalano P, Feghali M, Herman WH, et al., Epidemiology and management of gestational diabetes. *Lancet* 2024;404(10448):175–192. [https://doi.org/10.1016/S0140-6736\(24\)00825-0](https://doi.org/10.1016/S0140-6736(24)00825-0)

[15] Modzelewski R, Stefanowicz-Rutkowska MM, Matuszewski W, Bandurska-Stankiewicz EM, Gestational Diabetes Mellitus—Recent Literature Review. *Journal of Clinical Medicine* 2022;11(19):5736. <https://doi.org/10.3390/jcm11195736>

[16] Rahnemaei FA, Pakzad R, Amirian A, Pakzad I, Abdi F, Effect of gestational diabetes mellitus on lipid profile: A systematic review and meta-analysis. *Open Medicine* 2021;17(1):70–86. <https://doi.org/10.1515-med-2021-0408>

[17] Borén J, Taskinen MR, Björnson E, Packard CJ, Metabolism of triglyceride-rich lipoproteins in health and dyslipidaemia. *Nature Reviews Cardiology* 2022;19(9):577–592. <https://doi.org/10.1038/s41569-022-00676-y>

[18] Zeng S, Liu Q, Wu Y, Bai H, Fan P, Liu X, Reduced low-density lipoprotein cholesterol levels are associated with increased risk of gestational diabetes mellitus in Chinese women. *Scientific Reports* 2025;15(1):6435. <https://doi.org/10.1038/s41598-025-91258-8>

[19] Liu Y, Chi R, Jiang Y, Chen B, Chen Y, Chen Z, Triglyceride glycemic index as a biomarker for gestational diabetes mellitus: a systemic review and meta-analysis. *Endocrine Connections* 2021;10(11):1420–1427. <https://doi.org/10.1530/EC-21-0234>

[20] Song T, Su G, Chi Y, Wu T, Xu Y, Chen C, Triglyceride–glucose index predicts the risk of gestational diabetes mellitus: a systematic review and meta-analysis. *Gynecological Endocrinology* 2022;38(1):10–15. <https://doi.org/10.1080/09513590.2021.1940932>

[21] Mo Z, Cao C, Han Y, Hu H, He Y, Zuo X, Relationships between triglyceride–glucose index and incident gestational diabetes mellitus: a prospective cohort study of a Korean population using publicly available data. *Frontiers in Public Health* 2024;12:1294588. <https://doi.org/10.3389/fpubh.2024.1294588>

[22] Yilmaz Ergani S, İlhan TT, Tokgöz B, et al, Can Triglyceride/Glucose Index (TyG) and Triglyceride/HDL-Cholesterol Ratio (TG/HDL-c) Predict Gestational Diabetes Mellitus? *Ankara Eğitim ve Araştırma Hastanesi Tıp Dergisi* 2023;56(2):117–120. <https://doi.org/10.20492/aeahd.1327956>

[23] Al-Rawi HAG, Nori W, Salman DA, Issa AH, Akram W, The Utility of Maternal Adiponectin and Triglyceride-Glycemic Index for Gestational Diabetes Mellitus Screening: A Cross-Sectional Study. *Clinical and Experimental Obstetrics and Gynecology* 2024;51(12):262. <https://doi.org/10.31083/j.ceog5112262>

[24] Souleymane T, Yaya SI, Adourahmane S, Fatou D, Thorpe DF, et al, Contribution of the Triglycerides-Glucose Index (TyG) in the Assessment of Insulin Resistance in Pregnant Women During an OGTT Test. *Advances in Biochemistry* 2024;12(3):92–98. <https://doi.org/10.11648/j.ab.20241203.11>